En matemática, dentro de la teoría de números, la ley de reciprocidad cuadrática designa al «teorema áureo» que relaciona la solubilidad de dos congruencias de segundo grado relacionadas:
donde y son números primos impares.[1] Esta proposición fue descubierta por Carl Friedrich Gauss a los 18 años de edad y la demostró un año después.[2] Es reconocida como uno de los resultados más preciosos de la teoría de los números; fue formulada por el prolífico Leonhard Euler en 1783, y trece años después se encargó de probarla Gauss.[3]
Enunciado
El enunciado del teorema áureo es el siguiente:
|
El enunciado puede simplificarse utilizando el símbolo de Legendre:
entonces el enunciado del teorema puede resumirse de la siguiente forma:
Como es par si alguno de los primos p o q es congruente con 1 mod 4, y es impar en otro caso, es igual a 1 si p o q es congruente con 1 mod 4, y es igual a –1 si ambos son congruentes con 3 mod 4.
Algunas de las demostraciones más sencillas de la ley de reciprocidad cuadrática utilizan el lema de Gauss que trata sobre residuos cuadráticos, y que él mismo utilizó en dos de sus ocho demostraciones.
Historia
El teorema (como conjetura) fue enunciado inicialmente por Euler en 1742 en una carta a Goldbach. Alrededor de medio siglo después, en 1798 Legendre publicó una demostración que se basaba en argumentos no probados.
El teorema fue, por primera vez, fehacientemente demostrado por Gauss,[4] en 1801 en su libro Disquisitones Arithmeticae, donde da dos demostraciones del mismo. Gauss lo tenía en gran estima y lo denominó el teorema áureo.
Ya en el siglo XXI, en el libro Reciprocity Laws: From Euler to Eisenstein, de Franz Lemmermeyer, publicado en 2000, aparecen citadas 196 demostraciones diferentes de la ley de reciprocidad cuadrática.
Tabla de características cuadráticas de los números primos
R | q es un residuo (mod p) | q ≡ 1 (mod 4) o p ≡ 1 (mod 4) (o ambos) |
N | q es no residuo (mod p) | |
R | q es un residuo (mod p) | ambos q ≡ 3 (mod 4) y p ≡ 3 (mod 4) |
N | q es no residuo (mod p) |
q | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | ||
p | 3 | N | R | N | R | N | R | N | N | R | R | N | R | N | N | N | R | R | N | R | R | N | N | R | |
5 | N | N | R | N | N | R | N | R | R | N | R | N | N | N | R | R | N | R | N | R | N | R | N | ||
7 | N | N | R | N | N | N | R | R | N | R | N | R | N | R | N | N | R | R | N | R | N | N | N | ||
11 | R | R | N | N | N | N | R | N | R | R | N | N | R | R | R | N | R | R | N | N | N | R | R | ||
13 | R | N | N | N | R | N | R | R | N | N | N | R | N | R | N | R | N | N | N | R | N | N | N | ||
17 | N | N | N | N | R | R | N | N | N | N | N | R | R | R | R | N | R | N | N | N | R | R | N | ||
19 | N | R | R | R | N | R | R | N | N | N | N | R | R | N | N | R | N | N | R | N | R | N | N | ||
23 | R | N | N | N | R | N | N | R | R | N | R | N | R | N | R | N | N | R | R | N | N | N | N | ||
29 | N | R | R | N | R | N | N | R | N | N | N | N | N | R | R | N | R | R | N | N | R | N | N | ||
31 | N | R | R | N | N | N | R | N | N | N | R | N | R | N | R | N | R | R | N | N | N | N | R | ||
37 | R | N | R | R | N | N | N | N | N | N | R | N | R | R | N | N | R | R | R | N | R | N | N | ||
41 | N | R | N | N | N | N | N | R | N | R | R | R | N | N | R | R | N | N | R | N | R | N | N | ||
43 | N | N | N | R | R | R | N | R | N | R | N | R | R | R | R | N | R | N | N | R | R | N | R | ||
47 | R | N | R | N | N | R | N | N | N | N | R | N | N | R | R | R | N | R | N | R | R | R | R | ||
53 | N | N | R | R | R | R | N | N | R | N | R | N | R | R | R | N | N | N | N | N | N | R | R | ||
59 | R | R | R | N | N | R | R | N | R | N | N | R | N | N | R | N | N | R | N | R | N | N | N | ||
61 | R | R | N | N | R | N | R | N | N | N | N | R | N | R | N | N | N | N | R | N | R | N | R | ||
67 | N | N | N | N | N | R | R | R | R | N | R | N | N | R | N | R | N | R | R | N | R | R | N | ||
71 | R | R | N | N | N | N | R | N | R | N | R | N | R | N | N | N | N | N | R | R | R | R | N | ||
73 | R | N | N | N | N | N | R | R | N | N | R | R | N | N | N | N | R | R | R | R | N | R | R | ||
79 | N | R | N | R | R | N | R | R | N | R | N | N | N | N | N | N | N | R | N | R | R | R | R | ||
83 | R | N | R | R | N | R | N | R | R | R | R | R | N | N | N | R | R | N | N | N | N | N | N | ||
89 | N | R | N | R | N | R | N | N | N | N | N | N | N | R | R | N | N | R | R | R | R | N | R | ||
97 | R | N | N | R | N | N | N | N | N | R | N | N | R | R | R | N | R | N | N | R | R | N | R |
Otras leyes de reciprocidad
Existen otras leyes de reciprocidad: cúbica, bicuadrática y otras de grados superiores o de naturaleza algo diferente, aunque normalmente se encuentran fuera del ámbito de la aritmética de números enteros, y es necesario acudir a cuerpos de números algebraicos.
Véase también
Notas y referencias
- ↑ Se habla de número primo impar al referirse a cualquier número primo mayor que 2, ya que éste es el único número primo par.
- ↑ T. M. Apostol: Introducción a la teoría analítica de números, pág. 232 ISBN 84-291-5006-4
- ↑ Burton W. Jones, Teoría de los números, Editorial Trillas S. A., Ciudad de México (1969), pág. 138.
- ↑ Gauss, DA § 4, arts 107–150
- Gauss, Carl Friedrich (1995) [1801], Disquisitiones arithmeticae, traducido por Hugo Barrantes, Michael Josephy y Ángel Ruiz, San José, Costa Rica: Centro de Investigaciones Matemáticas y Meta-Matemáticas (CIMM), Universidad de Costa Rica., archivado desde el original el 1 de agosto de 2010, consultado el 24 de diciembre de 2016.
Enlaces externos
- Un juego que compara dos demostraciones de la Ley de Reciprocidad Cuadrática (en inglés)
- Weisstein, Eric W. «QuadraticReciprocityTheorem». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
- Hazewinkel, Michiel, ed. (2001), «Ley de reciprocidad cuadrática», Encyclopaedia of Mathematics (en inglés), Springer, ISBN 978-1556080104.