Un juego topológico es un juego infinito de información perfecta jugado entre dos jugadores en un espacio topológico. Los jugadores eligen objetos con propiedades topológicas como puntos, conjuntos abiertos, conjuntos cerrados y cubiertas abiertas. El tiempo es generalmente discreto, pero las obras pueden tener una duración transfinita y se han propuesto extensiones al tiempo continuo. Las condiciones para que un jugador gane pueden involucrar nociones como el cierre topológico y la convergencia.
Resulta que algunas construcciones topológicas fundamentales tienen una contraparte natural en los juegos topológicos; ejemplos de estos son la propiedad de Baire, espacios de Baire, propiedades de completitud y convergencia, propiedades de separación, propiedades de cobertura y base, imágenes continuas, conjuntos de Suslin y espacios singulares. Al mismo tiempo, algunas propiedades topológicas que surgen naturalmente en los juegos topológicos pueden generalizarse más allá de un contexto de teoría de juegos: en virtud de esta dualidad, los juegos topológicos se han utilizado ampliamente para describir nuevas propiedades de los espacios topológicos y para poner propiedades conocidas bajo una luz diferente. También existen estrechos vínculos con los principios de selección.
El término juego topológico fue introducido por primera vez por Claude Berge,[1][2][3] quien definió las ideas básicas y el formalismo en analogía con los grupos topológicos. Un significado diferente para el juego topológico, el concepto de “propiedades topológicas definidas por juegos”, fue introducido en el trabajo de Rastislav Telgársky,[4] y más tarde “espacios definidos por juegos topológicos”;[5] este enfoque se basa en analogías con juegos matriciales, juegos diferenciales y juegos estadísticos, y define y estudia juegos topológicos dentro de la topología. Después de más de 35 años, el término “juego topológico” se generalizó y apareció en varios cientos de publicaciones. El trabajo de encuesta de Telgársky[6] enfatiza el origen de los juegos topológicos del juego de Banach–Mazur.
Hay otros dos significados de juegos topológicos, pero estos se usan con menos frecuencia:
- El término juego topológico introducido por Leon Petrosjan[7] en el estudio de los juegos antagónicos de persecución-evasión. Las trayectorias en estos juegos topológicos son continuas en el tiempo.
- Los juegos de Nash (Hex), los juegos de Milnor (Y (juego)), los juegos de Shapley (juegos de planos proyectivos) y los juegos de Gale (juegos de Bridg-It) fueron llamados juegos topológicos por David Gale en su discurso (1979/80). El número de movimientos en estos juegos siempre es finito. El descubrimiento o redescubrimiento de estos juegos topológicos se remonta a los años 1948-1949.
Configuración básica para un juego topológico
Se pueden definir muchos marcos para infinitos juegos posicionales de información perfecta.
La configuración típica es un juego entre dos jugadores, I y II, que alternativamente recogen subconjuntos de un espacio topológico X. En la nª ronda, el jugador I juega un subconjunto In de X, y el jugador II responde con un subconjunto Jn. Hay una ronda para cada número natural n, y después de que se juegan todas las rondas, el jugador I gana si la secuencia
- I0, J0, I1, J1,...
satisface alguna propiedad y, de lo contrario, el jugador II gana.
El juego está definido por la propiedad objetivo y los movimientos permitidos en cada paso. Por ejemplo, en el juego de Banach–Mazur BM ( X ), los movimientos permitidos son subconjuntos abiertos no vacíos del movimiento anterior, y el jugador I gana si .
Esta configuración típica se puede modificar de varias formas. Por ejemplo, en lugar de ser un subconjunto de X, cada movimiento puede consistir en un par donde y . Alternativamente, la secuencia de movimientos puede tener una longitud de algún número ordinal distinto de ω1.
Definiciones y notación
- Una partida del juego es una secuencia de movimientos legales.
- I0, J0, I1, J1,...
- El resultado de una jugada es una victoria o una pérdida para cada jugador.
- Una estrategia para el jugador P es una función definida sobre cada secuencia finita legal de movimientos del oponente de P. Por ejemplo, una estrategia para el jugador I es una función s a partir de secuencias (J0, J1,..., Jn) para subconjuntos de X. Se dice que un juego se juega de acuerdo con la estrategia s si cada movimiento del jugador P es el valor de s en la secuencia de movimientos anteriores de su oponente. Entonces, si s es una estrategia para el jugador I, el juego
- es de acuerdo con la estrategia s. (Aquí λ denota la secuencia vacía de movimientos).
- Se dice que una estrategia para el jugador P es ganadora si por cada jugada de acuerdo con la estrategia s resulta en una victoria para el jugador P, por cualquier secuencia de movimientos legales del oponente de P. Si el jugador P tiene una estrategia ganadora para el juego G, esto se denota . Si alguno de los jugadores tiene una estrategia ganadora para G, entonces se dice que G está determinado. Se sigue del axioma de elección que hay juegos topológicos no determinados.
- Una estrategia para P es estacionaria si depende sólo del último movimiento del oponente de P; una estrategia es Markov si depende tanto del último movimiento del oponente como del número ordinal del movimiento.
El juego Banach – Mazur
El primer juego topológico estudiado fue el juego de Banach-Mazur, que es un ejemplo motivador de las conexiones entre las nociones de la teoría de juegos y las propiedades topológicas.
Sea Y un espacio topológico y sea X un subconjunto de Y, denominado conjunto ganador. El jugador I comienza el juego eligiendo un subconjunto abierto no vacío , y el jugador II responde con un subconjunto abierto no vacío . El juego continúa de esta manera, y los jugadores eligen alternativamente un subconjunto abierto no vacío del juego anterior. Después de una secuencia infinita de movimientos, uno para cada número natural, el juego termina y yo gano si y solo si
Las conexiones topológicas y teóricas del juego demostradas por el juego incluyen:
- II tiene una estrategia ganadora en el juego si y solo si X es de la primera categoría en Y (un conjunto es de la primera categoría o escaso si es la unión contable de conjuntos densos en ninguna parte).
- Si Y es un espacio métrico completo, a continuación, que tiene una estrategia ganadora si y sólo si X es comeagre en algún subconjunto abierto no vacío de S.
- Si X tiene la propiedad de Baire en Y, entonces el juego está determinado.
Otros juegos topológicos
Algunos otros juegos topológicos notables son:
- el juego binario introducido por Ulam — una modificación del juego de Banach–Mazur;
- el juego de Banach - jugado en un subconjunto de la línea real;
- el juego Choquet - relacionado con los espacios tamizables;
- el juego de puntos abiertos, en el que el jugador I elige puntos y el jugador II elige vecindarios abiertos de ellos.
Se han introducido muchos más juegos a lo largo de los años, para estudiar, entre otros: el principio de correducción de Kuratowski; propiedades de separación y reducción de conjuntos en clases proyectivas cercanas; tamices Luzin; teoría de conjuntos descriptiva invariante; conjuntos de Suslin; el teorema de la gráfica cerrada; espacios palmeados; MP-espacios; el axioma de elección; funciones recursivas. Los juegos topológicos también se han relacionado con ideas en lógica matemática, teoría de modelos, fórmulas infinitamente largas, cadenas infinitas de cuantificadores alternos, ultrafiltros, conjuntos parcialmente ordenados y el número de colores de grafos infinitos.
Para obtener una lista más larga y una descripción más detallada, consulte el documento de encuesta de Telgársky de 1987.[6]
Véase también
- Rompecabezas topológico
Referencias
- ↑ C. Berge, Topological games with perfect information. Contributions to the theory of games, vol. 3, 165–178. Annals of Mathematics Studies, no. 39. Princeton University Press, Princeton, N. J., 1957.
- ↑ C. Berge, Théorie des jeux à n personnes, Mém. des Sc. Mat., Gauthier-Villars, Paris 1957.
- ↑ A. R. Pears, On topological games, Proc. Cambridge Philos. Soc. 61 (1965), 165–171.
- ↑ R. Telgársky, On topological properties defined by games, Topics in Topology (Proc. Colloq. Keszthely 1972), Colloq. Math. Soc. János Bolyai, Vol. 8, North-Holland, Amsterdam 1974, 617–624.
- ↑ R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193–223.
- 1 2 R. Telgársky, "Topological Games: On the 50th Anniversary of the Banach-Mazur Game", Rocky Mountain J. Math. 17 (1987), 227–276.
- ↑ L. A. Petrosjan, Topological games and their applications to pursuit problems. I. SIAM J. Control 10 (1972), 194–202.