Partición en 6 subconjuntos.

Una partición de un conjunto A está formada por los subconjuntos A1, A2, A3, ..., An, los cuales deben cumplir:

  • Que la unión de todos los subconjuntos sea igual al conjunto dado.

A1 A2 A3 ... An = A

  • Que todos los subconjuntos sean disjuntos entre sí.
  • Que ningún subconjunto sea vacío.

Esta división se representa mediante una colección o familia de subconjuntos de dicho conjunto que lo recubren.

El concepto de partición está ligado al de relación de equivalencia: toda relación de equivalencia sobre un conjunto define una partición de , y viceversa. Cada elemento de la partición corresponde a una clase de equivalencia de la relación

Ejemplo:

Dado el conjunto A = {1, 2, 3} se define su partición como:

A1 = {1} ⋃ {2} ⋃ {3}

A2 = {1,2} ⋃ {3}

A3 = {1} ⋃ {2,3}

A4 = {1,3} ⋃ {2}

A5 = {1, 2, 3}

Número de particiones

El número de particiones posibles para un conjunto finito solo depende de su cardinal n, y se llama el número de Bell Bn. Los primeros números de Bell son B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, ...

Referencias

  • Lipschutz, Seymour (1991). Teoría de conjuntos y temas afines. McGraw-Hill. ISBN 968-422-926-7. 
  • Weisstein, Eric W. «Bell Number». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. 

Véase también

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.